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Abstract  
 

South Sudan, a new country, is planning to develop its 

mineral sector by allocating exploration licenses to inves-

tors, a decision that requires preliminary knowledge of the 

geology and mineral occurrences, both of which are un 

available as the country has been engaged in a civil war for 

over 50 years. In concert with this need, the objective of this 

study is to apply remote sensing techniques for mapping 

hydrothermal alteration zones of the Didinga Hills region in 

South Sudan, an area that is not easily accessible due to rug-

ged terrain, poor roads, and wars; hence the mapped altera-

tion zones would be utilize as potential areas to facilitate 

allocation of mineral titles through the South Sudan Mining 

Cadastre System. Despite that, there are artisanal gold min-

ing sites being excavated by the natives in the area for dec-

ades. Those sites have been utilized as ground truth in veri-

fying the results of this study. Digital processing of the mul-

tispectral images (Landsat 8) for the study area has been 

performed to extract information related to lithology, hydro-

thermal alteration, and geological structures using optimal 

band combination, band ratioing, and principal component 

analysis techniques. The results proved the efficiency of 

remote sensing data and techniques in providing the required 

geological information for the new country to sustainably 

develop its crucial mineral resources, which will contribute 

effectively to socioeconomic planning, development, and 

prosperity of the nation. 

 

3.1 Introduction 
 

 Geologic mapping through in situ field survey is tedious, 

time consuming, expensive, and sometimes impractical, es-

pecially in remote and rugged terrain areas and war-affected 

regions. Such limitations could be mitigated by utilizing 

satellite remote sensing, which is not restricted by the natu-

ral and social barriers on the ground.  

 

 Geologic mapping is widely used in planning exploration 

strategies, such as the selection of regions to explore and 

extract certain types of ore deposits [1]. Mapping of hydro-

thermal alteration zones, ore minerals, igneous rocks hosting 

ores, and oxidized and leached rocks that commonly occur at 

the surface above sulfide-bearing ores can be used in con-

junction with geophysical and geochemical data to produce 

zonation patterns to define prospective corridors of exotic 

mineralization [1]. Likewise, regional mapping of major 

faults or contacts bounding shear zones that coincide with a 

map-scale transition from green schist to amphibolite facies 

regional metamorphism are spatially associated with major 

gold deposits in Archean greenstone belts; hence are consid-

ered to indicate areas of enhanced exploration potential [2] 

[1].  

 

 South Sudan, a new country separated from Sudan in 

2011, is planning to allocate exploration licenses to inves-

tors, a decision that requires preliminary knowledge of loca-

tions of mineral resources. Similarly, construction of its ma-

jor infrastructure, e.g. capital city, dams, roads, and bridges, 

requires geological information about sites, hazards, and 

building materials. In concert with this need, the objective of 

this study is to apply remote sensing techniques for mapping 

hydrothermal alteration zones of the Didinga Hills region in 

South Sudan; hence utilize the mapped alteration zones as 

potential areas to facilitate allocation of mineral titles 

through the South Sudan Mining Cadastre System. 

  

 The Didinga Hills are located in the southeastern part of 

the country and borders Uganda, Kenya, and Ethiopia (Fig. 

1), an area that is not easily accessible due to rugged terrain, 

poor roads, and wars (e.g., due to unexploded land mines). 

We selected Didinga Hills as the study area for testing re-

mote sensing techniques because of the region’s diverse ge-

ology, aridity and bedrock surface exposure relative to other 

parts of the country that are occupied by rain forest. The 

region is also ideal for this project because it is known for 

exploration of alluvial gold. Although the bedrock source to 

the alluvial gold has not been established, but there is clear 

field association between the presence of the alluvial gold 

workings in the study area and the background geology of 

metasediments, schists, marble, and younger post-tectonic 

granitic intrusions known to cause contact metamorphism 

and alteration, as well ―unpublished‖ [3]. 

  

 Remote sensing offers a synoptic view on a regional scale, 

hence providing a complementary perspective to ground 

observations. In 2002, Ariki et al., carried out a reconnais-

sance fieldwork project (funded by the United States Agency 

for International Development, USAID) in the area during 

which mapping of only 60 sq. km was accomplished in sev-

eral months. Consequently, this study aims at utilizing re-

mote sensing for mapping hydrothermal alteration zones of 
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the Didinga Hills region to obtain better coverage and accu-

racy with significantly reduced time and cost.  

 

 
Figure 1. Location map of the study area (Modified from 

www.nationsonline.org)  

 

 Hydrothermally altered rocks are characterized by unusu-

ally colorful appearances. The various colorful rocks are the 

host rocks of those mineral deposits with the colors repre-

senting the results of chemical interaction with the surround-

ing hydrothermal fluids [4]. The hydrothermal fluid process-

es altering the mineralogy and chemistry of the host rocks 

can produce distinctive mineral assemblages which vary per 

the location, degree, and duration of those alteration pro-

cesses. When these alteration products are exposed at the 

surface, they can be mapped as a zonal pattern, theoretically 

concentric around a core of highest grade alteration and 

greatest economic interest [5].  

 

Although gold cannot be detected directly by any remote 

sensing method, the presence of minerals such as iron oxides 

and clay minerals, whose diagnostic spectral signatures, (in 

the visible/shortwave infrared portion of the electromagnetic 

spectrum) could be used as indicators for identification of 

hydrothermal alteration zones, which are associated with 

gold occurrences ―unpublished‖ [6] [7]. Hence, knowledge 

of these mineral occurrences facilitates the licensing process 

which is of prime importance in the exploitation of the coun-

try’s mineral resources.  

 

3.2 Regional geological setting 

The area is part of the Precambrian East African Orogeny 

comprising the Arabian-Nubian Shield (ANS) in the north 

and the Mozambique belt in the south [8] and is dominated 

by volcano-sedimentary rocks, dismembered ophiolites, and 

syn- and post-tectonic granitoids. There are occurrences of 

many rejuvenated older crustal terranes and accumulations 

of sediments and/or volcanic rocks in aulacogens or basins, 

which subsequently were metamorphosed and deformed. 

The final accretion of different island arcs resulted in strong 

tectonic deformation during the Pan-African orogeny in the 

Neoproterozoic. 

 In the study area, there are Archean cratonic rocks of high-

grade metamorphism (granulites), (e.g., the Imatong Moun-

tains) the Proterozoic granitoids, meta- sedimentary, and 

meta-volcanic rocks (Fig. 2). The metamorphic basement is 

poorly surveyed and so is shown as undifferentiated (i.e., not 

separately identified or distinguished) basement on existing 

maps. Likewise, there are insufficiently structural studies or 

modern age determinations on the basement rocks to allow a 

viable subdivision into major tectonic units or terranes [9]. 

 

 Overlying the basement rocks are effusive volcanic rocks 

(mainly basalts) that occupy the eastern border areas with 

Kenya and Ethiopia. These volcanic rocks are related to the 

East African Rift System (EARS). These in turn are overlain 

by the Tertiary to Quaternary unconsolidated sediments 

(Umm Ruwaba Formation) which are mainly sands, gravels, 

clay sands, and clay ―unpublished‖ [3] [10]. The altitude 

varies between 440 m and 3100 m. Hence, many seasonal 

streams flow down the hills, causing remarkable erosion that 

leads to widespread deposition of placer gold, along with 

eluvial and alluvial stream sediments.  

 There are widespread artisanal gold mining sites being 

excavated by the natives in the area for decades (Fig. 3). 

 

 
Figure 2. Geological Map of the Kapoeta mineral district with 

study area demarcated  

(Modified from BGS International, UK). 

 

 

 
Figure 3. Artisanal gold mining sites in the study area. 

 

3.3 Methodology 
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 The multispectral imagery for the target area is comprise 

of one frame of Landsat 8 data (P171/R057), collected on 

January 10th, 2015. The visible (VIS) and shortwave infra-

red (SWIR) Bands 1 to 7 and 9, in addition to the thermal 

infrared (TIR) bands 10 and 11 of Landsat 8 were stacked 

and used in this study. The TIR were resampled to 30m spa-

tial resolution. The SWIR bands are useful in rock and min-

eral discrimination, whereas TIR are useful in recognizing 

silicate minerals. Table 1 below shows a list of both Landsat 

7 and Landsat 8 bands with their wavelength coverage and 

pixel size, as well. 

 
Table 1. list of both Landsat 7 and Landsat 8 bands 

Landsat-7 ETM+ Bands (µm)Landsat-8 OLI and TIRS  

Bands (µm)  

 Landsat-7 

ETM+ Bands (µm) 

Landsat-8 OLI and TIRS 

Bands (µm)  

  30 m 

Coastal/Aerosol     

0.435 - 0.451 

Band 

1 

Band 

1 

30 m Blue                       

0.441 - 0.514 
30 m Blue                       

0.452 - 0.512 
Band 

2 
Band 

2 
30 m Green                     

0.519 - 0.601 
30 m Green                     

0.533 - 0.590 
Band 

3 
Band 

3 
30 m Red                        

0.631 - 0.692 
30 m Red                        

0.636 - 0.673 
Band 

4 
Band 

4 
30 m NIR                        

0.772 - 0.898  
30 m NIR                        

0.851 - 0.879  
Band 

5 
Band 

5 
30 m SWIR-1                 

1.547 - 1.749 
30 m SWIR-1                 

1.566 - 1.651 
Band 

6 
Band 

6 
60 m TIR                        

10.31 - 12.36 
100 m TIR-1                   

10.60 - 11.19 

Band 

10 
100 m TIR-2                   

11.50 - 12.51 

Band 

11 
Band 

7 

30 m SWIR-2                  

2.064 - 2.345 

30 m SWIR-2                  

2.107 - 2.294 

Band 

7 
Band 
8 

15 m Pan                         

0.515 - 0.896 

15 m Pan                         

0.503 - 0.676 

Band 

8 

  30 m Cirrus                     

1.363 - 1.384 

Band 

9 
 

 

 The geological map of the region (Fig. 2) shows all litho-

logic units for utilization as ground reference to aid interpre-

tation of the processed satellite imagery of the study area. 

Likewise, known artisanal gold mining sites (Fig. 3) can be 

matched with the hydrothermal alteration sites identified by 

the analysis of the multispectral images. Digital processing 

of the multispectral images for the study area was performed 

using ERDAS Imagine and ER Mapper software (Hexagon 

AB).  

 

 Over the past two decades, the development of spectral 

remote sensing technologies has significantly advanced ca-

pabilities for mapping mineral system-related alteration, 

particularly with the applications of hyperspectral remote 

sensing data [11]. However, a long-standing problem in re-

mote sensing has been the trade-off between the ability to 

map complex scenes and the expense of developing sensors 

with high Signal-to-Noise Ratio (SNR) and spatial/spectral 

resolution [12]. Currently, the operational hyperspectral re-

mote sensing data (e.g. AVIRIS, HyMap, Hyperion) are dif-

ficult to apply to a wide area because of the relatively nar-

row swath compared to Landsat ETM [13]. 

 

 Hydrothermal alteration minerals with diagnostic spectral 

absorption properties in the visible and near-infrared (VNIR) 

through the shortwave infrared (SWIR) wave length regions 

can be identified by multispectral and hyperspectral remote 

sensing data [14]. 

 

 One of the key idea of remote sensing techniques in explo-

ration geology is that it is applied to rocks, minerals, and 

structures associated with a particular ore, and not the ore 

itself. There are very logical reasons for this procedure. The 

ore is not always exposed at the surface, and it is often not as 

spectrally unique or as widely disseminated as the minerals 

and rocks that are associated with the ore body [7]. 

The multispectral image processing techniques selected and 

applied in this research included:  

 1) Optimal color composite with the selection of the opti-

mal band combinations based on the Optimum Index Factor 

(OIF) developed by Chavez et al. [15]; 2) Spectral ratio 

techniques [7]; and 3) Principal Component Analysis (PCA) 

described by Crosta and Moore [16]. These techniques are 

further discussed below. 

 

3.1 Optimal color composite images 

 Generation of a composite image has been done by blend-

ing information from three selected bands based on their 

relation to known spectral properties of rocks and alteration 

minerals [7] [17]. For instance, in Landsat 7, the SWIR band 

7 is useful in rock and mineral discrimination [7] [18] [17]. 

 Spectral analysis of remote sensing imagery exploits var-

iation in color intensity values within color composite imag-

es to interpret them in terms of lithological variations and/or 

rock alterations; thus, the choice of bands to generate a com-

posite image is site dependent. The best combinations of 

spectral bands for lithologic discrimination were determined 

using the Optimum Index Factor (OIF) [15]. 
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where Si is the standard deviation for band i, Rij is the corre-

lation coefficient between bands i and j of the three bands 

being evaluated.  

Finally, the OIF values are ranked in a table in a descending 

order.  
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 The relative order of the three bands into three colors of 

Red, Green, and Blue (RGB) has no effect on the value of 

OIF [15]. The OIF computation simplifies the complex and 

tedious process of selecting three appropriate bands to com-

bine in colors for optimum interpretation. However, the 

technique is scene dependent and suffers from non-

uniformity of images due to assignment of colors based on 

the determination of the analyst [19].  

3.2 Band ratioing 

 Band ratioing is a technique used for the effective display 

of spectral variations [20] [21] and hence enhances composi-

tional information while suppressing other types of infor-

mation about the earth's surface, e.g., terrain slope and grain 

size differences [7].  Band ratioing means dividing the pixel 

values in one spectral band by the corresponding pixel val-

ues in a second band. The reason for this is twofold. First, 

the differences between the spectral reflectance of certain 

surface types can be highlighted or emphasized. The second 

reason is to remove the variation caused by differences in 

illumination, and consequently radiance which may affect 

interpretation; Consequently, the ratio between differentially 

illuminated area of the same surface type will be homoge-

nized [7] [17]. Overall, this process enhances the contrast 

between materials by dividing the brightness values (digital 

numbers, DN) of two selected bands [22] [7], because shad-

ows are regions of greatly reduced radiance in all spectral 

bands. 

 Choice of band ratios depends on the purpose of the appli-

cation, spectral reflectance, and positions of the absorption 

bands of the mineral being mapped. For discrimination of 

alteration of clay minerals (e.g. AlOH), Landsat 8 ratio 

B6/B7 is generally preferred, whereas for iron oxide miner-

als (e.g. gossans, limonite, and hematite) the ratio B4/B2 

which characteristically displays bright signatures for iron 

oxides. The ratio B5/B6 emphasizes ferrous minerals [23]. 

 Different alteration assemblages create outcrops of differ-

ent morphology. For instance, silica-pyrite alteration pro-

duces resistant cliff outcrops, whereas clay-rich alteration 

assemblages result in extensive colluvium [24]. The band 

ratio technique addresses well the influence of topography 

on spectral response, which qualifies it as one of the effec-

tive methods for mapping hydrothermally altered rocks. 

 

3.3 Principal Component Analysis (PCA) 

Transformation 
 

 Image transformation based on PCA is an image en-

hancement technique for displaying the maximum contrast 

from multiple spectral bands with just three primary compo-

site bands [7]. PCA is a multivariate statistical technique 

used to reduce data redundancy by transforming the original 

data into new orthogonal principal component axes produc-

ing uncorrelated images. Such an image set has much higher 

contrast than the original bands.  

 The number of output principal component (PC) bands are 

equal to the input spectral bands, with the first principal 

component, PC1, containing most of the data variability 

[25]. Each subsequent PC contains the next highest amount 

of variance, which becomes smaller as the order of the PC 

increases [7]. The last PC bands contain least variance and 

represent the most unusual, most distinctive pixels in the 

scene. Some of those distinctive pixels are noise, which of-

ten can be recognized as such by noticing their distinctive 

spatial patterns. The remaining distinctive pixels are the rar-

est minerals in the frame or scene, though we cannot identify 

the mineral composition by PC images alone.  

 The PCA technique applied for the data in this paper was 

introduced by Crosta and Moore (1989) essentially based on 

the examination of PCA eigenvectors to determine which PC 

images concentrate information directly related to the theo-

retical spectral signatures of specific targets. The relevant 

PC images could then show targeted surface types (rock, 

soil, and vegetation) by highlighting them as bright or dark 

pixels, depending on their respective eigenvector magnitudes 

and signs (positive/negative). The Crosta and Moore tech-

nique can be implemented to delineate hydrothermal altera-

tion zones [26].  

 In the current study, a variation method based on the PCA, 

called Feature-oriented Principal Component Selection 

(FPCS), was applied in processing of Landsat 8 imagery to 

extract hydrothermal alteration zones. The technique uses 

the generalized reflectance curve of the feature of interest, 

such as hydrothermal alteration in which band ratios are 

considered in the choice of the best Principal Component, 

based on the ratio of their respective eigenvector values ―un-

published‖ [6].  

 The FPCS technique is performed by using four selected 

Operational Land Imager (OLI) bands to highlight the spec-

tral response of iron-oxide minerals (absorption in VIS 

bands 2 and higher reflection in the VIS Band 4 (in case of 

Landsat 8) and hydroxyl-bearing (clay) minerals (absorption 

in SWIR band 7, higher reflectance in SWIR band 6).  For 

instance, to determine which PC best represents iron-bearing 

minerals depends on the eigenvector values of bands 4 and 2 

in a Landsat 8 dataset. Likewise, the representation of clay 

minerals is controlled by the eigenvectors of bands 6 and 7 

referenced to their generalized reflectance spectra curve of 

the USGS Library of minerals [26].  

 The signs (+/-) of the eigenvector values was considered 

in the ratioing process because they determine which feature 

of interest (Fe oxide or clay) would be represented as bright 

or dark pixels in the image. In selecting the optimum princi-

pal component, the two eigenvector values should always be 

different in signs. Consequently, the numerator being posi-

tive implies bright pixels, whereas when it is negative im-
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plies dark pixels representing the feature of interest [26] [27] 

[28]. 

  

4. Results and Interpretations 
 

 Band combination using the OIF in selecting the best 

spectral bands based on their contrast was effective. The true 

color image with the combination of bands 4, 3, 2 in RGB 

(Fig. 4) is among the least contrast images, whereas the false 

color combination of bands 4, 7, 5 in RGB (Fig. 5) exhibit 

greater contrast and hence more variety of lithologies are 

displayed in accordance with the respective OIF.  

   
Figure 4. Simulated true color image of the Didinga Hills 

formed with the combination of bands 4, 3, and 2 assigned to 

the red, green, and blue colors (RGB), respectively. 

 

 This band combination (FCC 432 RGB) is as close to 

"true color" as one can get with a Landsat OLI image. One 

unfortunate drawback with this band combination is that 

these bands tend to be susceptible to atmospheric interfer-

ence, so they sometimes appear hazy, such as the smoke 

trending NW in the lowest corner of Figure 4 above.  

 

 
Figure 5. FCC Image 475 RGB of the Didinga Hills for better 

lithological identification.  

 

 Band ratio image OLI B4/B2 highlights rocks that have 

been subjected to oxidation of iron-bearing sulfides (e.g. 

pyrite and chalcopyrite). This is because altered rocks are 

more reflective in Band 4 and less reflective in Band 2 – the 

latter because of iron absorption [23] [7] [29] [17]. Likewise, 

the ratio for the clay alteration B6/B7 revealed brighter pix-

els over rock exposures mostly of the undifferentiated Pre-

cambrian basement. The intensity of alteration gradually 

changes for the gray images from darker (fewer) to brighter 

(more) tones.  

 

 In color composite images, the variation depends on the 

color assignment. On the other hand, in the ratio image (Fig. 

6), the red color has been assigned to the ratio B4/B2, the 

green to B6/B5, and the blue to B6/B7, respectively. The 

result is that the areas of hydrothermal alteration appear as 

bright yellow.  

 

 
Figure 6. Color combination of the band ratio images B4/B2, 

B6/B5 and B6/B7 assigned to red, green and blue colors, respec-

tively. Hydrothermal alteration zones appear as bright yellow 

(almost equal amounts of displayed colors of red and green). 
 

 For Feature-oriented Principal Component Selection 

(FPCS), statistical calculations of Landsat 8 image for the 

Didinga Hills region have produced the required parameters 

for data input, which are then used to determine the targeted 

alteration type and the relative PC number, and whether it 

would be represented as a bright or dark pixel in the result-

ing image. 

  

 The selected bands are shown in Tables 2 and 3 below. 

 

 

 
Table 2. Feature oriented Principal Component Selection 

(FPCS) data (Bands 2, 4, 5, and 6) for Iron oxide minerals. 

Eigenvector Band 2 Band 4 Band 5 Band 6 

PC 1 0.500 0.502 0.497 -0.501 

PC2 -0.457 -0.415 0.780 0.098 

PC 3 -0.521 0.097 -0.351 0.772 

PC 4 -0.518 0.753 0.144 -0.380 
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Table 3. Feature oriented Principal Component Selection 

(FPCS) data (Bands 2, 5, 6, and 7) for clay minerals. 

Eigenvector Band 2 Band 5 Band 6 Band 7 

PC 1 0.500 0.500 0.500 0.500 

PC2 -0.598 -0.388 0.540 0.447 

PC 3 0.626 -0.770 0.124 0.019 

PC 4 0.007 -0.083 -0.666 0.742 

 

 The highlighted values in Tables 2 and 3 shows that iron 

alterations appear as bright tones pixels in PC4 (Fig. 7) be-

cause eigenvector values are positive for band 4 and nega-

tive for band 2. Thus, the iron alteration ratio B4/B2 will 

appear as bright. Contrarily, the eigenvector values are nega-

tive for band 6 and positive for band 7, which implies that 

the clay alteration ratio B6/B7 will be represented in PC4 by 

dark pixels (Fig. 8).   

 

 

 
Figure 7. PC 4 (Bands 2,4,5,6) showing iron oxide alterations as 

pixels of bright tones. 

 

 

 
Figure 8. PC 4 (Bands 2,5,6,7) showing clay alteration minerals 

as dark pixels because eigenvector values of the numerator 

(band 6) is negative.  See the principal component analysis 

methods section. Gradation within the dark pixels is difficult to 

observe and therefore it’s coloring pattern is reversed in Figure 

9. 

 

 The enhancement to the clay (hydroxyl-bearing) alteration 

minerals were obtained after their respective PC4 was made 

positive (DN multiplied by -1), such that these alteration 

minerals would be mapped in brighter and distinguishable 

tones (Fig.9). The clay minerals cover a wide area, especial-

ly on low-lying plains in the southern part of the study area. 

 

 Those areas are not necessarily representing potential 

mineral prospect locations, but instead are only the accumu-

lation of muds deposited by flash floods.     

 

  
Figure 9. Clay minerals alteration in PC4 appear as bright pix-

els after their dark pixels in Figure 8 above have been en-

hanced.  

 

 The selection of alteration zones by the FPCS method 

(Figs. 7 and 9) has revealed almost the same locations (see 

Fig. 9) as those identified by the band ratio images (Fig. 6). 

Consequently, those locations could be considered potential 

sites for mineral exploration. A strong correspondence is 

also visually shown between these inferred alteration zones 

and the known old artisan gold mining locations in the study 

areas (Fig. 3). 

  

 The spatial distribution of the hydrothermal alteration 

zones in the study area (Fig. 10) comprising of the iron ox-

ide minerals seen as red and the clay minerals seen in white. 

Both iron and clay alteration zones (extracted from Fig. 6) 

have been overlain on an FCC image (bands 7,11,10 RGB) 

representing silicates in yellow color. Solidification, which 

is an important indicator of hydrothermal alteration, is not 

recognizable on VIS and SWIR bands, but instead variations 

in silica content are recognizable in multispectral thermal 

infrared TIR images [7]. 
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Figure 10. Spatial distribution of hydrothermal alteration zones 

relative to artisanal mining sites in the study area. 

 

 The distribution of the alteration zones corresponds well 

with seven of the artisanal mining works in the study area 

except for two sites (Maji and Vaka), which are not associat-

ed with alluvial artisanal gold deposits. 

 

 The geological features of prime interest for potential 

mineral prospecting are within the proximity to structures 

such as fold axis and fault/ shear zones. The results of this 

study have shown clear association of the detected hydro-

thermal alteration zones with areas of contact. 

 

  
 Figure 11. FCC image 475 RGB zoomed-in to the central part 

of the Didinga Hills for better   lithological identification. Ubc is 

undifferentiated basement complex, Pi is Precambrian intru-

sive rocks, and Px is Precambrian extrusive rocks. 

 

metamorphism. For instance, the contact BB (Fig. 11) be-

tween the extrusive volcanic (Px) and the Schist along which 

artisanal mining sites (Anak-nak, Napotpot, and Lolim) are 

located southeast of Kapoeta town and extending to the area 

SW of Narus town is a clear indication of such association 

(Figs. 10 and 11). 

 Other alteration zones are in the vicinity of the shear zone 

containing artisanal mining sites at Nakishot, Vaka, and 

Maji. Those associated with faults are in the proximity of 

Chukudum Shear zone (Fig 11) 

5. Discussion  

 The presence of zones of hydrothermal alteration is re-

flected by the higher values of OLI band ratios illustrated by 

lighter tone pixels in the Landsat 8 imagery shown in Fig-

ures 6, 7, and 9. Most of these same areas of greater altera-

tion coincide well with areas characterized by significant 

silicification – quartz veins sometimes associated with se-

ricite and pyrite ―unpublished‖ [3]. For instance, the areas to 

the east and southeast of Kapoeta town are known as artisan 

gold mining sites (Fig. 3).  

 Most artisan gold works are conducted on alluvial depos-

its, derived from iron-rich rocks suggesting intense surface 

oxidation that appears widely on the OLI ratio of B4/B2 

from the presence of ferric oxides (ilmenites / hematite) 

(Figs. 6). The mining activities are restricted to areas of 

mainly weathered or altered metasediments, e.g. marble and 

tremolite-actinolite schists ―unpublished‖ [3].  Other rock 

units which include mining activity comprise graphitic 

gneiss and chlorite-sericite schist with interfoliated quartz 

veins ―unpublished‖ [3]. Similarly, the band ratio B6/B7 

refers to clay minerals of which Kaolinites were the most 

abundant in the area as shown in Figure 9. 

  The PCA technique helped in identifying iron and clay 

minerals, but was not definitive in discriminating or naming 

the various possible minerals which may constitute the 

brighter color shown by a particular group of pixels at a spe-

cific location on the image. The lithological discrimination 

by remote sensing does not delineate sharp boundaries, but  

Rather gradational ones. That is because mapping in this 

case depends on color recognition which could be blur or 

obscure due to lose floats or soil stains washed from one 

rock unit to another [7] [12]. 

  

 The validity of the applied remote sensing techniques was 

performed on published and unpublished geological maps, 

as well as the known sites for artisanal mine conducted by 

the natives of the Didinga Hills (Fig. 3). 

  

 Given the fact that South Sudan has been under-surveyed 

geologically this study has been utilized in allocation of min-

imal exploration concessions based on the identified hydro-

thermal alteration zones as shown on Figure 12 below. 
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Figure 12.  South Sudan Mining Cadastre Portal showing min-

eral titles concessions (brown polygons) and the study area 

marked by a black polygon. 

 

 Following this research, the study area was granted to 

mining companies some of which conducted high resolution 

geophysical together with limited geological and geochemi-

cal surveys in their concessions resulting in identification of 

important targets e.g. granite terrains, greenstone belts, 

anomalous areas at Anak-nak and Kawokono (Fig. 11). Ad-

ditionally, some structures e.g. Chukudum Shear Zone and a 

variety of faults and folds associated with alluvial and eluvi-

al gold occurrences have been recommended for further ex-

ploration work.  

6. Conclusions 

 The study focuses on the spatial distribution of the main 

types (Fe Oxide and Al hydroxyl) of hydrothermally altered 

rocks as a means of determining the general extent of poten-

tial mineralization in the Didinga Hills. The results obtained 

have identified hydrothermal alteration zones in the Didinga 

hills. The demonstrated approach has the potential to reduce 

the cost and time of the preliminary stage of ground recon-

naissance that is necessary for decision makers in prioritiz-

ing their allocation of mineral exploration titles.  

 Remote sensing techniques hold the potential to provide 

information needed for socioeconomic planning, identifying 

natural hazards (such as earthquake faults, areas of land-

slides); building the nation’s infrastructure of roads and 

highways, railroads, pipelines, utilities, dams and making 

wiser decisions about land-use and specifically in develop-

ment of the country mineral resources. Additionally, Landsat 

images are free so the cost of conducting the needed survey 

is low; hence the application of remote sensing is economi-

cally viable in case of absence or scarcity of geological sur-

vey data, such as is currently happening in South Sudan.  

 Mapping hydrothermal alteration zones in the Didinga 

Hills by remote sensing techniques would enable future ap-

plication of this type of analysis to map the under-surveyed 

regions of South Sudan for further exploration and sustaina-

ble development of its mineral resources.   
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